[Zn(acac),] Catalyzed Addition of Cyanogen to Dipivaloylmethane: Facile Synthesis of 2,2,6,6- Tetramethyl-4(1-amino-1-cyano)methyliden-3,5-hep**tanedione**

B. CORAIN, M. BASATO, E. MORI

Centro di Studio sulla Stabilità e Reattività dei Composti di *Coordinazione, C.N.R., Istituto di Chimica Analitica, 35100 Padua, Italy*

and G. VALLE

Centro *di Studio dei Biopolimeri, C.N.R., Istituto di Chimica Organica, 35100 Padua, Italy*

Received January 24,1983

In the course of our studies on the metal-promoted activation of cyanogen $[1-4]$ we have found that C_2N_2 can be very effectively added to dipivaloylmethane (Hdpm; I) in toluene at ambient conditions in the presence of catalytic amounts of $[Zn(acac)_2]$. $([Zn^{2+}] = 1 \times 10^{-3} M;$ [Hdpm] = 0.2 M; $[C_2N_2] =$ 0.4 M) to give the title compound (2) (in yields of ca. 50%; selectivity 70% after 150 h; scheme 1) as white, extremely pure crystals upon simple slow evaporation of the solvent at room temperature.

$$
(CH3)3C-C0
$$

\n
$$
H-C-H + C2N2
$$

\n
$$
H-C-H + C2N2
$$

\n
$$
C H3/3C-C0
$$

\n
$$
C H3/3C-C0
$$

\n
$$
C H3/3C-C0
$$

\n
$$
CH3/3C-C0
$$

\n
$$
CH3/3C-C0
$$

\n
$$
CH3/3C-C0
$$

\n
$$
CH3/3C-C0
$$

Scheme 1

2 is soluble in n-hexane, diethyl ether and the common organic solvents and it exists predominantly as the vinylogous amide both in d_6 -DMSO and CDCl₃. The two $C(O)C(CH₃)₃$ groups are free to rotate around the C-C bonds in DMSO at room tempera-

TABLE I. ¹H NMR Data for [Hdpm \cdot C₂N₂] in Various Media.

ture, while a strong $C=O \cdot \cdot \cdot H-N$ bond prevents completely the rotation of one of these groups in CDCl₃ (Table I). 2 was characterized by IR and mass spectra as well as by thermal analysis. 2 melts at 89 $^{\circ}$ C and appears to be thermally stable in the range $50-200$ °C. The conformation is depicted in Fig. 1.

Fig. 1. Molecular structure of 2 (some bond distances in \AA are given in the figure).

Crystal data. From single crystal diffractometry, $M \circ K\alpha$ radiation, the crystals are monoclinic, space group $P2_1/n$; $a = 16.856(6)$, $b = 11.764(5)$, $c = 6.898$ -(4) \hat{A} , β = 90.0(8)^o, D_c = 1.14, D_o = 1.13 g cm⁻³; Z = 4. Intensity data were collected on a Philips diffractometer PW1100 to a θ = 25°. 1344 reflections with I > $3\sigma(I)$, among 2416 unique ones, were considered. Structure factors were phased by Multan program and non-hydrogen atoms were refined anisotropically by block-diagonal least squares (w = $3.25/(\sigma^2(F))$ +0.00056 F2). Hydrogen atoms were obtained from a Fourier difference synthesis and isotropically refined. The final conventional R factor was 0.060. Apparently 2 exists as vinylogous amide in the solid state, but this circumstance should not of- course prevent 2 from existing also as 1,3-ketoenolic species in convenient solvents, thus being able to give metal ketoenolate complexes under suitable conditions [5].

The bonding ability of 2 was tested towards nickel(II) according to reaction 1:

$$
[\text{Ni(acac)2] + 2Hdpm \cdot C_2N_2 \xrightarrow{K}
$$

$$
[\text{Ni(dpm \cdot C_2N_2)2] + 2Hacac
$$
 (1)

Fig. 2. Spectral and thermodynamic data for the reaction of [Ni(acac)₂] with [Hdpm·C₂N₂]; [Ni²⁺] = 1 × 10⁻² *M*. A) Representative spectral changes for a [Ni(acac)₂]₂ solution $(= 1 \times 10^{-2}$ *M*) containing increasing amounts of [Hdpm·C₂N₂] $(C = 1.86 \times 10^{-2} - 8.8 \times 10^{-2} M)$. B) Spectrum at [Hdpm·C₂N₂] = 8.8 × 10⁻¹ *M*, expanded scale. C) Absorbance of the peak at $\lambda = 435$ nm vs. [Hdpm·C₂N₂] concentration.

The relevant data are collected in Fig. 2. It is seen that addition of 2 produces the gradual development of a species absorbing at 555 nm, $\epsilon = 120$ (535 nm
for [Ni(dpm)₂], $\epsilon = 80$) in CH₂Cl₂. These figures are identical to those exhibited by an authentic sample of $[Ni(dpm \cdot C_2N_2)_2]$ obtained upon cyanogen addition to $\left[\text{Ni(dpm)}_{2}\right]$ in n-hexane, by cooling at -30 °C $\left[6\right]$.

The liposolubility of the metal complexes derived from 2, coupled with the circumstance that in these complexes each organometallic ring possesses a considerable coordination ability towards metal centers [7] and, conceivably, good binding possibility towards electrophilic centers present in organic substrates, make 2 a promising ligand-progener Hdpmlike but in principle more chemically versatile for nmr applications [8].

References

- 1 B. Corain, A. Del Prà, F. Filira, and G. Zanotti, Inorg. *Chem., 18, 3523 (1979).*
- $\overline{2}$ B. Corain, C. Crotti, A. Del Prà, F. Filira, and G. Zanotti, Inorg. *Chem.,* 20, 2044 (1981).
- B. Corain, M. Basato, and H. F. Klein, Angew. *Chem., Internat. Edit., 20, 962 (1981).*
- B. Corain and M. Basato, J. *Organometal. Chem.,* in print.
- 5 W. C. Fernelius and B. E. Bryant, *Inorg. Synt.*, 5, 105 (1957).
- C. Ballotta and B. Corain, unpublished results.
- 7 B. Corain and M. A. Giama, unpublished results. We find that several bis cyanoimino-1,3-carbonylenolate metal complexes (see for example ref. 1 and 4) exhibit strong coordination ability towards Pd(II).
- R. Von Ammon and R. Dieter Fischer, *Angew. Chem., Internat. Ed., II, 675 (1972).*