[Zn(acac)₂] Catalyzed Addition of Cyanogen to Dipivaloylmethane: Facile Synthesis of 2,2,6,6-Tetramethyl-4(1-amino-1-cyano)methyliden-3,5-heptanedione

B. CORAIN, M. BASATO, E. MORI

Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, C.N.R., Istituto di Chimica Analitica, 35100 Padua, Italy

and G. VALLE

Centro di Studio dei Biopolimeri, C.N.R., Istituto di Chimica Organica, 35100 Padua, Italy

Received January 24, 1983

In the course of our studies on the metal-promoted activation of cyanogen [1-4] we have found that C_2N_2 can be very effectively added to dipivaloylmethane (Hdpm; *I*) in toluene at ambient conditions in the presence of catalytic amounts of $[Zn(acac)_2]$ - $([Zn^{2*}] = 1 \times 10^{-3} M$; [Hdpm] = 0.2 M; $[C_2N_2] =$ 0.4 M) to give the title compound (2) (in yields of *ca.* 50%; selectivity 70% after 150 h; scheme 1) as white, extremely pure crystals upon simple slow evaporation of the solvent at room temperature.

Scheme 1

2 is soluble in n-hexane, diethyl ether and the common organic solvents and it exists predominantly as the vinylogous amide both in d_6 -DMSO and CDCl₃. The two C(O)C(CH₃)₃ groups are free to rotate around the C-C bonds in DMSO at room tempera-

TABLE I. ¹H NMR Data for [Hdpm ·C₂N₂] in Various Media.

ture, while a strong C=O···H-N bond prevents completely the rotation of one of these groups in CDCl₃ (Table I). 2 was characterized by IR and mass spectra as well as by thermal analysis. 2 melts at 89 °C and appears to be thermally stable in the range 50-200 °C. The conformation is depicted in Fig. 1.

Fig. 1. Molecular structure of 2 (some bond distances in Å are given in the figure).

Crystal data. From single crystal diffractometry, MoK α radiation, the crystals are monoclinic, space group $P2_1/n; a = 16.856(6), b = 11.764(5), c = 6.898$ -(4) Å, $\beta = 90.0(8)^{\circ}$, $D_c = 1.14$, $D_o = 1.13$ g cm⁻³; Z =4. Intensity data were collected on a Philips diffractometer PW1100 to a θ = 25°. 1344 reflections with I > $3\sigma(I)$, among 2416 unique ones, were considered. Structure factors were phased by Multan program and non-hydrogen atoms were refined anisotropically by block-diagonal least squares (w = $3.25/(\sigma^2(F))$ +0.00056 F^2). Hydrogen atoms were obtained from a Fourier difference synthesis and isotropically refined. The final conventional R factor was 0.060. Apparently 2 exists as vinylogous amide in the solid state, but this circumstance should not of course prevent 2 from existing also as 1,3-ketoenolic species in convenient solvents, thus being able to give metal ketoenolate complexes under suitable conditions [5].

Medium	Resonance (ppm)	Group	Structure in solution
d ₆ -DMSO	0.99 6.68	^{1,2} C(O)C(CH ₃) ₃ NH ₂	$(CH_3)_3^1 C - C = C = C$ $(CH_3)_3^2 C - C = C$
d ₆ -DMSO/CDCl ₃ (1:1)	1.13 1.10 6.90	¹ C(O)C(CH ₃) ₃ ² C(O)C(CH ₃) ₃ NH ₂	
CDCl ₃	1.19 1.13 5.33	¹ C(O)C(CH ₃) ₃ ² C(O)C(CH ₃) ₃ NH ₂	

The bonding ability of 2 was tested towards nickel(II) according to reaction 1:

$$[Ni(acac)_{2}] + 2Hdpm \cdot C_{2}N_{2} \xleftarrow{K}$$
$$[Ni(dpm \cdot C_{2}N_{2})_{2}] + 2Hacac \qquad (1)$$

Fig. 2. Spectral and thermodynamic data for the reaction of $[Ni(acac)_2]$ with $[Hdpm \cdot C_2N_2]$; $[Ni^{2+}] = 1 \times 10^{-2} M$. A) Representative spectral changes for a $[Ni(acac)_2]_2$ solution $(= 1 \times 10^{-2} M)$ containing increasing amounts of $[Hdpm \cdot C_2N_2]$ (C = $1.86 \times 10^{-2} \div 8.8 \times 10^{-2} M$). B) Spectrum at $[Hdpm \cdot C_2N_2] = 8.8 \times 10^{-1} M$, expanded scale. C) Absorbance of the peak at $\lambda = 435$ nm vs. $[Hdpm \cdot C_2N_2]$ concentration.

The relevant data are collected in Fig. 2. It is seen that addition of 2 produces the gradual development of a species absorbing at 555 nm, $\epsilon = 120$ (535 nm for [Ni(dpm)₂], $\epsilon = 80$) in CH₂Cl₂. These figures are identical to those exhibited by an authentic sample of [Ni(dpm \cdot C₂N₂)₂] obtained upon cyanogen addition to [Ni(dpm)₂] in n-hexane, by cooling at -30 °C [6].

The liposolubility of the metal complexes derived from 2, coupled with the circumstance that in these complexes each organometallic ring possesses a considerable coordination ability towards metal centers [7] and, conceivably, good binding possibility towards electrophilic centers present in organic substrates, make 2 a promising ligand-progener Hdpmlike but in principle more chemically versatile for nmr applications [8].

References

- 1 B. Corain, A. Del Prà, F. Filira, and G. Zanotti, Inorg. Chem., 18, 3523 (1979).
- 2 B. Corain, C. Crotti, A. Del Prà, F. Filira, and G. Zanotti, Inorg. Chem., 20, 2044 (1981).
- 3 B. Corain, M. Basato, and H. F. Klein, Angew. Chem., Internat. Edit., 20, 962 (1981).
- 4 B. Corain and M. Basato, J. Organometal. Chem., in print.
- 5 W. C. Fernelius and B. E. Bryant, Inorg. Synt., 5, 105 (1957).
- 6 C. Ballotta and B. Corain, unpublished results.
- 7 B. Corain and M. A. Giama, unpublished results. We find that several bis cyanoimino-1,3-carbonylenolate metal complexes (see for example ref. 1 and 4) exhibit strong coordination ability towards Pd(II).
- 8 R. Von Ammon and R. Dieter Fischer, Angew. Chem., Internat. Ed., 11, 675 (1972).